JNIVERSITY

Motivation

Challenge: Simplistic latent code sampling strategies hinder diversity in current generative modeling techniques

$$\epsilon \sim p_0(\epsilon) = \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Related Work: DLow, ECCV 2020, STARS, ECCV 2022 – introduce an affine transformation to circumvent *mode collapse* in generative models

$$\mathbf{Z} = \mathbf{A}\boldsymbol{\epsilon} + \mathbf{b}$$

However, this limited capacity transformation cannot capture complex sample correlations, i.e., ineffective for uncertainty *across the modes* and rare modes.

Key Idea: A *transformer-based diversification mechanism* for highly realistic and diverse 3D motion generation.

	Overview				
Latent Space	Start Sampled Fu				
	CVAE	J.	有家	J.	R
	DLow	J.	李安	¢	of the
	MDN (Ours)	J.	常行	A	\$

t-SNE

z-transformer: We employ an *attention-based diversification module* to produce a diverse set of latent vectors that expressively model correlations among multiple samples and modes.

Motion Primitives: To guide sample diversity and reduce modeling complexity in diverse scenarios, we incorporate deterministic motion primitives (centroids of clusters in the 3D pose space).

Scene and Social Context: We use the transformer architecture to easily fuse in additional context, i.e., as keys and values in the z-transformer.

Dense Urban Navigation Benchmark: Prior datasets (e.g., Human3.6M, AMASS, and HumanML3D) are limited to static indoor settings. We introduce **DenseCity**, a simulation benchmark with dense pedestrians. We also use YouTube, which helps further address the current gap between simulated, generated, and realistic 3D human motion.

Motion Diversification Networks

Hee Jae Kim and Eshed Ohn-Bar Boston University

Model Architecture of MDN

Loss Functions:

(Stage 1) $\mathcal{L}_{CVAE} = KL(e_{\phi}(z|X,C))$

(Stage 2) $\mathcal{L}_{MDN} = \mathcal{L}_r + \mathcal{L}_d$

Reconstruction loss, $\mathcal{L}_r = \min_k \|\widehat{Y}_k - Y\|^2$ Diversity promoting loss, $\mathcal{L}_d = \frac{2}{K(K-1)} \sum_{j=1}^{K} \sum_{k=1}^{K} \sum_{k=1}^{K} \sum_{j=1}^{K} \sum_{j$

Latent Variable Transformer (q_{ψ}):

We transform the K set of random variables ($\mathcal{E} \in \mathbb{R}^{K \times N_z}$) into a diverse set of latent codes ($\mathbf{Z} \in \mathbb{R}^{K \times N_z}$) by utilizing motion primitives ($\mathbf{A} \in \mathbb{R}^{K \times N_f}$), scenes and social contexts ($\mathbf{C} \in \mathbb{R}^{T_h \times N_c}$) as keys ($\mathbf{K} \in \mathbb{R}^{K \times N_z}$) and values ($\mathbf{V} \in \mathbb{R}^{K \times N_z}$):

 $\mathcal{E} \sim p_0(\epsilon) = \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\mathbf{Z} = q_{\psi}(\mathbf{X}, \mathbf{C}, \mathcal{E}, \mathbf{A}) = \operatorname{Attn}(\mathcal{E}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax}\left(\frac{\mathcal{E}\mathbf{K}^{\mathsf{T}}}{\sqrt{N_z}}\right)\mathbf{V}$

Diversified latent codes ($z_k \in \mathbb{R}^{N_z}$) are decoded into highly diverse motion samples ($\widehat{\mathbf{Y}}_k \in \mathbb{R}^{T_f \times N_f}$) using the pre-trained decoder (g_{θ}):

$$\{\widehat{\mathbf{Y}}_k\}_{k=1}^K = \mathcal{G}_{\boldsymbol{\theta}}(\mathbf{z}_k)$$

 T_h : Time horizon in history

$$||p_0(z)) + ||g_\theta(z) - Y||_2^2$$

$$= j+1 \exp(-\frac{\|\widehat{\mathbf{Y}}_j - \widehat{\mathbf{Y}}_k\|_1}{\alpha})$$

 $_{k}$, X, C)

 T_f : Time horizon in future

Dataset

Evaluation on Human3.6M

Method	APD \uparrow	ADE \downarrow	$FDE \downarrow$		3DPW [61]			HPS [24]		
DLow [74]	11 741	0.425	0 518	Method	APD \uparrow	ADE \downarrow	$FDE \downarrow$	APD \uparrow	ADE \downarrow	$FDE \downarrow$
MOJO [81]	12.579	0.412	0.510	CVAE [32]	3.068	1.032	1.096	3.592	0.970	1.019
GSPS [40]	14.757	0.389	0.496	DLow [79] MDN	4.111	1.010 0.982	1.069	4.835 6.943	0.958	1.005 0.971
BeLFusion [3]	7.602	0.372	0.474	CVAE [32]+YouTube	3 100	0.991	1.060	3 634	0.913	0.958
STARS [68]	15.884	0.358	0.445	DLow [79]+YouTube	4.160	0.969	1.000	5.010	0.898	0.938
MDN (Ours)	17.450	0.355	0.442	MDN+YouTube	8.266	0.918	0.986	6.925	0.886	0.930

Quantitative Results

Evaluation on DenseCity

1		3D Pose			2D Path			
6	Method	APD ↑	ADE \downarrow	$FDE \downarrow$	APD ↑	ADE \downarrow	$FDE \downarrow$	
	CVAE [32]	7.451	0.610	0.932	-	-	-	
	PoseGPT [38]	9.099	0.913	0.980	-	-	-	
	HuMoR [48]	11.134	0.705	1.030	-	-	-	
ŧ	DLow [79]	11.980	0.596	0.899	-	-	-	
	Cao et al. [7]	5.810	0.858	1.285	0.978	0.701	0.675	
	MDN	16.799	0.584	0.879	1.065	0.666	0.621	
	Cao et al. [7]+YouTube	5.593	0.805	1.096	0.782	0.697	0.632	
	MDN+YouTube	16.812	0.578	0.921	1.331	0.646	0.589	

Evaluation on 3DPW & HPS

Qualitative Results

Perceptual User Study